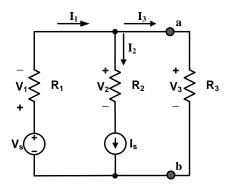
Solution for the Practice Problem


COURSE : ECS204 Basic Electrical Engineering Laboratory

1. Measure the exact values of R_1 to R_3 .

 $R_1 = 0.820 \text{ k}\Omega$

 $R_2\!=1.200\;k\Omega$

 $R_3=2.200\;k\Omega$

2. Connect the circuit in Figure 1. Record the exact values of V_S and I_S.

$$V_S = 15.00 \text{ V}$$

$$I_S = 12.00 \text{ mA}$$

3. Measure voltage and current in the following table.

Only V _S is active				Only Is is active				Both V _S and I _S are active			
I ₁	4.97	V_1	4.07	I ₁	8.74	V_1	7.17	I ₁	14.00	V_1	11.24
I_2	0	V_2	0	I_2	12.00	V_2	14.40	I_2	12.00	V_2	14.40
I_3	4.97	V_3	10.93	I_3	-3.26	V_3	-7.17	I_3	1.71	V_3	3.76

• All current values are in mA. All voltage values are in V.

Remarks

- We use a power supply to create the current source I_S . The voltage V_{S2} of this power supply is adjusted so that the current (measured by the DMM) to it is I_S .
- The value of V_{S2} is 10.641 V for the case when both V_S and I_S are active. When only I_S is active, the power supply voltage V_{S2} should be 21.568 V.
- 4. Find the Thevenin equivalent circuit at R_3 by considering R_3 as a load.

$$V_{TH} = 5.16 V$$

$$R_{TH}=\textbf{0.820}~k\Omega$$

• Remark: The value of V_{S2} (the voltage of the voltage source for the fake current source) should be 9.24 V.

5.
$$I_N = 6.29 \text{ mA}$$

• Remark: The value of V_{S2} (the voltage of the voltage source for the fake current source) should be 14.4 V.